Methods
Reading and accessing data
Data
All methods except generate_3d_image
are methods applied to the Data
object.
Data(path, id_type='numeric', id_list=None)
Attributes:
path
: str- Path to MRICloud data text file
id_type
: str, {'numeric', 'filename', 'custom'}, default = 'numeric'- Type of subject ID formatting
id_list
: list, default = None- List of custom subject IDs
df
: DataFrame- DataFrame generated from path
get_data
Retrieve DataFrame of a given data object.
get_data()
Parameters:
- None
Returns:
DataFrame
get_id
Retrieve list of unique subject IDs.
get_id()
Parameters:
- None
Returns:
Series
Manipulating data
rename_subject
Rename a specific subject ID.
rename_subject(old, new)
Parameters:
old
: str- Old subject name to be replaced
new
: str- New subject name
Returns:
DataFrame
long_to_wide
Convert default long form data to a wide format.
long_to_wide()
Parameters:
- None
Returns:
DataFrame
Visualization
generate_sunburst
Generate a Plotly Express sunburst Figure model.
generate_sunburst(type, id, base_level=5)
Parameters:
type
: int, {1, 2}- Type of hierarchical view
id
: str- Subject ID
base_level
: int, {1, 2, 3, 4, 5}, default = 5- Lowest hierarchical level to include
Returns:
Figure
generate_treemap
Generate a Plotly Express treemap Figure model.
generate_treemap(type, id, base_level=5)
Parameters:
type
: int, {1, 2}- Type of hierarchical view
id
: str- Subject ID
base_level
: int, {1, 2, 3, 4, 5}, default = 5- Lowest hierarchical level to include
Returns:
Figure
generate_icicle
Generate a Plotly Express icicle Figure model.
generate_icicle(type, id, base_level=5)
Parameters:
type
: int, {1, 2}- Type of hierarchical view
id
: str- Subject ID
base_level
: int, {1, 2, 3, 4, 5}, default = 5- Lowest hierarchical level to include
Returns:
Figure
generate_bar
Generates a Plotly Express bar graph Figure.
generate_bar(type, level, id, x='ID', y='Prop', log_y=False)
Parameters:
type
: int, {1, 2}- Type of hierarchical view
level
: int, {1, 2, 3, 4, 5}- Hierarchical level of interest
id
: list, default = None- Subjects of interest
x
: str, {'ID', 'Object'}, default = 'ID'- Independent variable
y
: str, {'Prop', 'Volume'}, default = 'Prop'- Dependent variable
log_y
: bool, default = False- Logarithm of dependent variable
Returns:
Figure
generate_mean_diff
Generate a Plotly Express mean difference plot Figure.
generate_mean_diff(type, level, color='ID', id=None)
Parameters:
type
: int, {1, 2}- Type of hierarchical view
level
: int, {1, 2, 3, 4, 5}- Hierarchical level of interest
color
: str, {'ID', 'Object'}, default = 'ID'- Variable to organize data by color
id
: list, default = None- Subjects of interest
Returns:
Figure
generate_corr_matrix
Generate a Plotly Express heatmap Figure of a correlation matrix.
generate_corr_matrix(type, level, id=None)
Parameters:
type
: int, {1, 2}- Type of hierarchical view
level
: int, {1, 2, 3, 4, 5}- Hierarchical level of interest
id
: list, default = None- Subjects of interest
Returns:
Figure
Modeling and covariate analysis
append_covariate_data
Append covariate dataset to data object.
append_covariate_data(path, icv=False, tbv=False)
Parameters:
path
: str- Path to covariate dataset file
icv
: bool, default = False- Append intracranial volume to covariate dataset
tbv
: bool, default = False- Append total brain volume to covariate dataset
Returns:
DataFrame
normalize_covariate_data
Normalize region data in covariate dataset by ICV, TBV, or ICV + TBV.
normalize_covariate_data(covariate_dataset, normalizing_factor)
Parameters:
covariate_dataset
: DataFrame- Covariate dataset to be normalized
normalizing_factor
: str, {'icv, tbv, icv_tbv'}- Variable to normalize region volumes by
Returns:
DataFrame
OLS
Run statsmodels Ordinary Least Squares regression on data object.
OLS(covariate_dataset, covariates, outcome, log=False, residual_plot=False)
Parameters:
covariate_dataset
: DataFrame- Dataset containing the covariates and outcome
covariates
: list- Covariates to include in analysis (x, independent covariates)
outcome
: str- Outcome of interest (y, dependent covariate)
log
: bool, default = False- Logaritm of covariates
residual_plot
: bool, default = False- Return a residual plot of analysis results as Plotly Figure
Returns:
RegressionResultsWrapper.summary()
,
Figure
Logit
Run statsmodels Logit regression on data object.
Logit(covariate_dataset, covariates, outcome, log=False, roc_plot=False)
Parameters:
covariate_dataset
: DataFrame- Dataset containing the covariates and outcome
covariates
: list- Covariates to include in analysis (x, independent covariates)
outcome
: str- Outcome of interest (y, dependent covariate)
log
: bool, default = False- Logaritm of covariates
roc_plot
: bool, default = False- Return a residual plot of analysis results as Plotly Figure
Returns:
RegressionResultsWrapper.summary()
,
Figure
Imaging
Generates a subplot or single image (if 'nrows' and 'ncols' is 1) of region-specific brain images on a template brain
generate_3d_image
generate_3d_image(img_path, regions, view, nrows, ncols, slice_n=0)
Parameters:
img_path
: strregions
: listview
: int, {0 (horizontal), 1 (sagittal), 2 (coronal)}nrows
: int, {1, 2, 3, 4, 5, 6, 7}ncols
: int, {1, 2, 3, 4, 5, 6, 7}slice_n
: int, default = 0